Code
This page contains links to the code that supports my publications as well as a set of links I find useful, they are more or less organized.
Repository supporting publications:
-
Target Specific Dataset Design: https://github.com/ReismanLab/regio_dataset_design
Links to Web Apps or GitHub pages I enjoyed:
Cheminformatics:
- RDKit-blog (Greg Landrum) : https://greglandrum.github.io/rdkit-blog/
- SMILES for beginners : https://www.cheminfo.org/
- RXNSMILES mapper App : http://cdb.ics.uci.edu/cgibin/reactionmap/ReactionMapWeb.py
- Coding in Chemistry (Nessa Carson) : https://supersciencegrl.co.uk/links/#Coding
- Peter Ertl website : https://peter-ertl.com/molecular/index.html
- Chemistry Toolkit (Martin Vérot) : http://perso.ens-lyon.fr/martin.verot/tools.php
- The Chemiscope : https://chemiscope.org/
Visualizing Chemical Space:
- Molplotly (Kjell Jorner) :tutorial.
- Chemplot
- The Chemiscope : https://chemiscope.org/
Books and Tutorials for Machine Learning in Chemistry:
- Deep Learning For Molecules and Materials (Andrew D. White) : https://dmol.pub/index.html
- Data Chemist Handbook : https://data-chemist-handbook.github.io/
More Computer Science Oriented:
- Understanding UMAP: https://pair-code.github.io/understanding-umap/
- Free online AI-courses (Piotr Skalski) : https://github.com/SkalskiP/courses
Open-source ressources and documentation:
- Molecular modeling applications: https://opensourcemolecularmodeling.github.io/#helper-applications
- Conferences summary by Nessa Carson: https://supersciencegrl.co.uk/conferences
Chemistry Data / Lesson Ressources:
- Visualization of molecular orbitals: OrbiMol
- Bond dissociation energies: UCSB website